Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

G. Senthil Kumar, ${ }^{\text {a }}$
K. Chinnakali, ${ }^{\text {b }}$ M. Gayatri Swaroop, ${ }^{\text {c }}$ P. Rajakumar ${ }^{\text {c }}$ and Hoong-Kun Fun ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Arunai Engineering College, Tiruvannamalai 606603,
Tiruvannamalai District, Tamil Nadu, India,
${ }^{\text {b }}$ Department of Physics, Anna University, Chennai 600025, India, ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India, and ${ }^{\text {d X}} \mathrm{X}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.154$
Data-to-parameter ratio $=22.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,9-Diazahexacyclo[17.6.1.1 $\left.1^{3,7} \cdot 1^{9,16} .0^{10,15} .0^{20,25}\right]$ -hexacosa-3,5,7(26),10(15),11,13,16(27),17,19(28),-20(25),21,23-dodecaene

The title compound, $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2}$, has one half-molecule in the asymmetric unit. The molecular twofold rotational symmetry is preserved on crystallization. The dihedral angle between the two symmetry-related indole ring systems is 49.65 (4) ${ }^{\circ}$. The benzene ring is oriented almost perpendicular [dihedral angle $\left.86.02(3)^{\circ}\right]$ to the planes of both indole ring systems. Molecules related by a centre of inversion are linked via intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to form chains along the c axis.

Comment

The indole system is present in a number of natural products (Yu et al., 2003) and is known to be a bioactive nucleus (Nussbaum, 2003). Indole-based cyclophanes (Bodwell et al., 1999) are of interest because they are infrequently encountered systems (Ortner et al., 2001). The synthesis of indolebased cyclophanes has recently been reported (Bodwell \& Li, 2002; Black et al., 2002) and these compounds have the ability to form complexes with metals such as cobalt (Gibe et al., 2003). The design and synthesis of cyclophanes possessing rigidly defined cavities and shape-persistent structures of molecular dimensions is of interest for the formation of molecular hosts in the areas of host-guest and electron donoracceptor complexation (Tobe et al., 2000). We report here the crystal structure of the title compound, (I), a cyclophane containing two indole units.

The asymmetric unit of compound (I) contains one halfmolecule, with the other half generated by a crystallographic twofold axis of symmetry (Fig. 1). The twofold axis passes through atoms $\mathrm{C} 12, \mathrm{H} 12, \mathrm{C} 13$ and H 13 and the mid-point of the $\mathrm{C} 14-\mathrm{C} 14^{\mathrm{i}}$ bond [symmetry code: (i) $1-x, y, \frac{1}{2}-z$]. The indole ring system is planar, with a maximum deviation of 0.024 (1) \AA for atom N1. Atom N1 deviates by 0.147 (2) \AA from the plane through atoms $\mathrm{C} 1, \mathrm{C} 8$ and C 9 , and the sum of the angles around N 1 is 356.7°. This slight pyramidalization behaviour is also observed in phenylsulfonyl indole derivatives (Beddoes et al., 1986).

Received 24 March 2006 Accepted 25 March 2006

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering scheme. Unlabelled atoms are related to labelled atoms by the symmetry operation $\left(1-x, y, \frac{1}{2}-z\right)$. Dashed lines represent $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Figure 2
Part of the crystal packing of (I), showing a $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen-bonded (dashed lines) chain. Only H atoms involved in the hydrogen bonding are shown.

The geometric parameters in the indole ring systems of (I) are comparable with those observed in 2-(2-acetamido-5-methylbenzoyl)-1H-indole (Ravishankar et al., 2005). The two symmetry-related indole ring systems are inclined at an angle of $49.65(4)^{\circ}$. The benzene ring is oriented almost perpendicular [dihedral angle $86.02(3)^{\circ}$] to the planes of both indole ring systems. This orientation is influenced by intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, namely $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 1$ and $\mathrm{C} 13-$ $\mathrm{H} 13 \cdots C g 1^{\text {i }}$ (symmetry code as in Table 2), where $C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 8$ ring. Additional $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the six-membered $\mathrm{C} 10-\mathrm{C} 13 / \mathrm{C} 10^{\mathrm{i}} / \mathrm{C} 11^{i}$ ring of which $C g 2$ is the centroid are also observed (Table 2). These interactions link molecules into chains along the c axis (Fig. 2).

Experimental

Tetrahydrofuran (THF) (200 ml) was placed in a three-necked roundbottomed flask, and $\mathrm{TiCl}_{4}(2.55 \mathrm{mmol}), \mathrm{Zn}(5.08 \mathrm{mmol})$ and a few drops of pyridine were added. The mixture was refluxed for 45 min and then 1-[3-(3-formyl-3a,7a-dihydroindol-1-ylmethyl)benzyl]-1 H -
indole-3-carbaldehyde (127 mmol) was added. The reaction mixture was refluxed overnight and then cooled, quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and filtered, and the THF was removed using a rotary evaporator. The residue was extracted with chloroform ($3 \times 100 \mathrm{ml}$), washed with water $(2 \times 100 \mathrm{ml})$ and brine (150 ml), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$ using hexane-chloroform (3:2). The compound was recrystallized from chloroform by slow evaporation.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=360.44$
Monoclinic, $C 2 / c$
$a=19.6434$ (9) £
$b=11.2843(5) \AA$
$c=9.0441$ (3) \AA
$\beta=112.635(4)^{\circ}$
$V=1850.32(13) \AA^{3}$
$Z=4$

$$
D_{x}=1.294 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1440 reflections
$\theta=2.3-21.2^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.57 \times 0.16 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.762, T_{\text {max }}=0.993$
13509 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.154$
$S=0.97$
2891 reflections
129 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0658 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \quad \text { (Sheldrick, 1998) }
\end{aligned}
$$

Extinction coefficient: 0.0035 (9)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.378(2)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.412(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.379(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.377(2)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.459(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.398(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.363(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.368(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.435(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.388(2)$
$\mathrm{C} 2-\mathrm{C} 14$	$1.470(2)$	$\mathrm{C} 14-\mathrm{C} 14^{\mathrm{i}}$	$1.329(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.399(2)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$107.73(13)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$112.33(13)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$124.46(14)$	$\mathrm{C} 14^{\mathrm{i}}-\mathrm{C} 14-\mathrm{C} 2$	$124.63(9)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$124.52(14)$		

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the rings $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 8$ and $\mathrm{C} 10-\mathrm{C} 13 / \mathrm{C} 10^{\mathrm{i}} /$ C11 ${ }^{1}$, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9B $\cdots C g 2^{\mathrm{ii}}$	0.97	2.82	$3.7184(19)$	154
C9-H9B $\cdots C g 2^{\text {iii }}$	0.97	2.82	$3.7184(19)$	154
C13-H13 $\cdots C g 1$	0.93	2.62	$3.2625(18)$	127
C13-H13 $\cdots C g 1^{\mathrm{i}}$	0.93	2.62	$3.2625(18)$	127
Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2} ;$ (ii) $-x+1,-y+1,-z ;$ (iii) $x,-y+1, z-\frac{1}{2}$.				

organic papers

H atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) and $0.97 \AA$ (methylene), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection and cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program used to solve and refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks the Malaysian Government and the Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and USM shortterm grant No. 304/PFIZIK/635028.

References

Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. \& Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

Black, D., St, C., Craig, D. C. \& Rezaie, R. (2002). Chem. Commun. pp. 810811.

Bodwell, G. J. \& Li, J. (2002). Org. Lett. 4, 127-130.
Bodwell, G. J., Li, J. \& Miller, D. O. (1999). Tetrahedron, 55, 1293912956.

Bruker (2005). APEX2 (Version 1.27), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Gibe, R., Green, J. R. \& Davidson, G. (2003). Org. Lett. 5, 10031005.

Nussbaum, F. V. (2003). Angew. Chem. Int. Ed. 42, 3068-3071.
Ortner, B., Waibel, R. \& Gmeiner, P. (2001). Angew. Chem. Int. Ed. 40, 12831285.

Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H.-K. (2005). Acta Cryst. E61, o3291-o3293.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tobe, Y., Nagano, A., Kawabata, K., Sonoda, M. \& Naemara, K. (2000). Org. Lett. 2, 3265-3268.
Yu, J., Wang, T., Liu, X., Deschamps, J., Anderson, J. F., Liao, X. \& Cook, J. M. (2003). J. Org. Chem. 68, 7565-7581.

[^0]: © 2006 International Union of Crystallography All rights reserved

